Enhancing Prefrontal Neuron Activity Enables Associative Learning of Temporally Disparate Events.
نویسندگان
چکیده
The ability to link events that are separated in time is important for extracting meaning from experiences and guiding behavior in the future. This ability likely requires the brain to continue representing events even after they have passed, a process that may involve the prefrontal cortex and takes the form of sustained, event-specific neuron activity. Here, we show that experimentally increasing the activity of excitatory neurons in the medial prefrontal cortex (mPFC) enables rats to associate two stimuli separated by a 750-ms long temporal gap. Learning is accompanied by ramping increases in prefrontal theta and beta rhythms during the interval between stimuli. This ramping activity predicts memory-related behavioral responses on a trial-by-trial basis but is not correlated with the same muscular activity during non-memory conditions. Thus, the enhancement of prefrontal neuron excitability extends the time course of evoked prefrontal network activation and facilitates the formation of associations of temporally disparate, but correlated, events.
منابع مشابه
Associative learning of classical conditioning as an emergent property of spatially extended spiking neural circuits with synaptic plasticity
Associative learning of temporally disparate events is of fundamental importance for perceptual and cognitive functions. Previous studies of the neural mechanisms of such association have been mainly focused on individual neurons or synapses, often with an assumption that there is persistent neural firing activity that decays slowly. However, experimental evidence supporting such firing activit...
متن کاملAssociative conditioning of single sensory neurons suggests a cellular mechanism for learning.
A cellular analog of associative learning has been demonstrated in individual sensory neurons of the tail withdrawal reflex of Aplysia. Sensory cells activated by intracellular current injection shortly before a sensitizing shock to the animal's tail display significantly more facilitation of their monosynaptic connections to a tail motor neuron than cells trained either with intracellular stim...
متن کاملPrediction Error during Retrospective Revaluation of Causal Associations in Humans fMRI Evidence in Favor of an Associative Model of Learning
Associative learning theory assumes that prediction error is a driving force in learning. A competing view, probabilistic contrast (PC) theory, is that learning and prediction error are unrelated. We tested a learning phenomenon that has proved troublesome for associative theory--retrospective revaluation--to evaluate these two models. We previously showed that activation in right lateral prefr...
متن کاملThe Role of Prefrontal Dopamine D1 Receptors in the Neural Mechanisms of Associative Learning
Dopamine is thought to play a major role in learning. However, while dopamine D1 receptors (D1Rs) in the prefrontal cortex (PFC) have been shown to modulate working memory-related neural activity, their role in the cellular basis of learning is unknown. We recorded activity from multiple electrodes while injecting the D1R antagonist SCH23390 in the lateral PFC as monkeys learned visuomotor asso...
متن کاملSuccessful memory formation is driven by contextual encoding in the core memory network
To understand how memories are successfully formed, scientists have compared neural activity during the encoding of subsequently remembered and forgotten items. Though this approach has elucidated a network of brain regions involved in memory encoding, this method cannot distinguish broad, non-specific signals from memory specific encoding processes, such as associative encoding. Associative en...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Cell reports
دوره 15 11 شماره
صفحات -
تاریخ انتشار 2016